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abstract. — We derive a simple, approximate link equation for a direct-detected, pulse-
position-modulated (PPM) optical link. To enable this, we utilize a fixed field-of-view 
parameter. Scaling laws are determined from the link equation, and we show that the link 
may be divided into three regions as a function of the link parameters: a signal-power-
dominant regime, a background-noise-dominant regime, and a bandwidth-limited regime. 
As a function of the range R, with all other parameters held constant, the data rate goes as 
/R1 2 in the signal-dominant regime, as /R1 4  in the noise-dominant regime, and saturates 

in the bandwidth-limited regime. An approximation to the optimum modulation order is 
determined for the signal-dominant case. The accuracy of the link equation is demonstrated 
by comparing its predictions with those produced by a link budget tool developed at JPL, 
showing good agreement. Finally, the equation is used to derive a critical data rate and 
noise power at which the link transitions from signal dominant to noise dominant.

I. Introduction

A link equation relates the conditions under which a communication link may be used to 
reliably transmit information. In this article, we develop a simplified link equation for an 
optical communications link, demonstrate its accuracy, and utilize it to predict a critical 
data rate above which background light is negligible. One can show that, over a range of 
target data rates and background noise levels, the most power efficient and practically im-
plementable method to signal at optical frequencies (near-infrared range) is to use intensity 
modulation at low duty cycles with photon-counting detectors, which may be modeled as a 
Poisson channel; see, e.g., [1]. Low duty cycles may be efficiently implemented with pulse-
position modulation (PPM). This system has been shown to be practically implementable, 
and represents the current state-of-the-art system for transmitting at high power efficiencies 
with optical carriers, capturing current designs for deep-space and near-Earth optical links; 
see, e.g., [2]. Hence, we model the channel as a Poisson PPM channel.

The link equation presented captures first-order parameters of the link, and abstracts out 
some of the low-level details involved in a more detailed, and more accurate, link budget. 
Doing so enables one to see the high-level trade-offs between parameters and their first-
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order impacts on link performance. This is motivated in part by cases where one wants to 
rapidly evaluate a number of link budgets; for example, to perform trade studies on data 
volumes returned by various ground terminals. In these cases, determining a highly ac-
curate link budget for each point may be computationally prohibitive and unwarranted. 
Moreover, one is often interested in relative changes, which may be quickly, and even ana-
lytically, determined with the link equation.

We draw comparisons to analogous link equations for a coherently modulated and detected 
link with a carrier presumed to lie in the microwave regime. As a shorthand, throughout 
we refer to the Poisson PPM link as an optical link, and to the coherently modulated and 
detected microwave link as an RF link. 

The article is organized as follows. In Section II, we provide the shared received power equa-
tion; in Section III, we restate the well-known RF link equation; in Section IV, we develop 
an optical link equation, illustrating limiting cases where certain constraints are active. In 
Section V, we demonstrate the accuracy of the link equation by comparison with a link bud-
get tool, and use the equation to identify a critical data rate below which background noise 
begins to degrade performance.

II. Received Power

The received power for either the RF or optical signal is given by

P G LEIRPr $ $ $ h=

where EIRP is the effective isotropic radiated power,
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is the receive antenna gain for effective diameter D,
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is the space loss at wavelength m and range R, and h is the system efficiency. We would like 
to determine what data rate may be transmitted over the link for a given received power. 
This will depend on how the signal is modulated and detected, and on any noise that de-
grades the detection and estimation process. We refer to the equation relating the data rate, 
received signal and noise power, and other relevant link parameters as the link equation.

III. Coherent Microwave (RF) Link Equation

Let Rb denote the information data rate (bits/second) to be transmitted over the channel. 
The channel capacity is the maximum data rate that may be transmitted reliably. The ca-
pacity of the power- and bandwidth-constrained RF Gaussian channel is given by [3]

(1)

(2)

(3)
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where W is the bandwidth occupied by the signal, k is Boltzmann’s constant in joules per 
kelvin, and T  is the system noise temperature in kelvins. Approximation (5) follows from 
assuming rP kTW 1%= , i.e., that one operates in the power-limited, as opposed to band-
width-limited, regime. Putting R Cb RF# , substituting the expression for rP  in Equation (1), 
and rearranging terms, we have
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Equation (6) is a bound on the condition required to close the link. We may take Equa-
tion (6) to be the RF link equation.1 For a given system efficiency and spacecraft transmitter
terminal ( , ,EIRPh m), the right-hand side is fixed. The left-hand side then provides the 
required condition to close the link with the given data rate, range, and receive antenna, 
which specifies ( /G T ). The equation facilitates interpreting the impact of changing param-
eters on the link. In the following section, we derive several analogous equations for the 
optical link.

IV. Direct-Detected Infrared (Optical) Link Equation

The capacity of the Poisson PPM channel is a function of the PPM order, and the received 
noise and signal rates. When only signal photoelectrons are present, we have

s

r
log

b/sC MT
M

e1 /EMP T
OPT

2 s= - -_ _i i

where M  is the PPM order, sT  is the slot width, and /E hc m=  is the energy per photon (h is 
Planck’s constant and c is the speed of light). The maximum supportable s/T1  is analogous 
to the bandwidth W  in the RF case. In the optical domain, the maximum supportable s/T1  
is typically limited by the maximum processing speed of the transmitter and receiver, the 
laser pulse width, and clock accuracy.

For nonzero background power, the capacity of this channel is given by [4]

y
s

y1C MT D p p p pD
1

b/s0OPT 0= -_ `a _i jk i

where ( ) /logD f g E f gf 2=  is the relative entropy, p1 and p0 are probability mass functions 
of a signal and noise slot, and yp  and yp 0  are the probability mass functions of a random 
PPM symbol and a noise vector, respectively. Evaluating Equation (8) requires one to ap-
proximate a multidimensional infinite sum or perform a Monte Carlo simulation. This does 

1 B. MacNeal, “Outline of MSTA’s RF Downlink Calculation,” JPL Interoffice Memorandum (internal document), Jet Pro-
pulsion Laboratory, Pasadena, California, 2012. 	
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not lend itself to deriving a simple link equation. However, we may approximate Equa-
tion (8) by combining a number of bounds on COPT [5]
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where Pn  is the detected noise power.

From Equation (9), we see that as we vary rP  with Pn fixed, we sweep out three re-
gions of operation, depending on which term in the denominator dominates. When 

n/ ( ) /( )lnP M P M2 1r & -  and r s/ ( ) /( ( ) )ln lnP M P MT M Er
2& , the background noise is negli-

gible, and we are in the (signal) power-constrained region. When /( ) / ( )lnP M P M2 1n r&-  
and n /( ) /( ( ) )lnP M P MT M2 1 Er s

2&- , we are dominated by background noise. At sufficient-
ly large rP , the third term dominates, the capacity saturates at s( )/log M MT2 , and we are in 
the bandwidth-constrained region. Depending on the noise power, we may see only two of 
the three regimes as a function of rP .

When the bandwidth constraint is inactive, we have
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This approximation is analogous to Equation (5) for the RF channel. Up to this point, we 
have been implicitly assuming the system efficiency h is invariant to rP  and Pn. However, 
this is not the case in practice. We address one deviation from this assumption in the fol-
lowing. Because the background noise is spatially uniform in the focal plane and the signal 
power is not, it follows that one can improve the system performance with a spatial filter, 
collecting power only over a finite region of the focal plane.2 This may be done with an iris, 
or via signal processing on the outputs of a detector array. The optimum setting of the spa-
tial filter depends on the incident signal and noise power, as well as the spatial distribution 
of the signal power. Having this attenuation depend on the signal and noise power would 
nominally complicate the definition of a link equation. We address this in the next section.

A. Setting the Field of View: Spatial Filtering of Signal and Noise

We factor the system efficiency as FOVh h h= l , where FOVh  denotes the fraction of the signal 
collected by a spatial filter. In this section, we’ll show that, to a reasonable approximation, 
we may take FOVh  to be a constant. 

Let ( , )I x y  be the normalized mean signal intensity function in the focal plane, such that 

A
,I x y dxdy

( , )x y d
_ i#

2 In the RF case, incident background noise is assumed to be negligible relative to thermal noise in the simplified link 
equation. For the optical channel, incident background noise is the dominant noise source. 	

(9)

(10)

(11)
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is the fraction of the received signal power collected in area A. We model ( , )I x y  as 
Gaussian3
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where F is the telescope focal length and r0 is the atmospheric coherence length along the 
line of sight. Let d be the radius of the collecting area in the focal plane, which we presume 
is populated with a collection of photon-counting photodetectors, and define a field of view 
(FOV) parameter

= ,
def

2 2

2

c
v

d

which is the ratio of the collecting area to the area of the signal intensity function at 
( , ) ( , )/I x y I e0 0= . Then we have

.e1FOVh = - c-

One would like to choose d, or, equivalently, c, to maximize the channel capacity. To deter-
mine this value, we must first determine the impact of c on the noise power. 

We assume the noise is dominated by sky radiance, such that [6]

n

( )
P

I D

4
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2rD X
= m

where Dm  is the bandwidth of a narrowband spectral filter that rejects noise outside a 
bandwidth around the carrier, X is the detector field-of-view, and Ib is the background sky 
radiance (W/m2 sr mm) incident on the aperture. For small angles, we have ( / )F 2. r dX , 
and, substituting c, we have

( . ) .
r D r

0 35
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0 35
2

0
2
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where the second approximation holds for D r0& .

We see from Equation (16) and Equation (17) that the noise power grows linearly in c 
while, from Equation (15), that the signal power saturates, growing as ( )e1 - c- . Hence, 
there is a capacity-maximizing c: a function of the incident signal intensity, noise radiance, 
and spatial distribution of the signal, characterized by v.

3 S. Piazzolla, personal communication, Jet Propulsion Laboratory, Pasadena, California, n.d.

(12)
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In [7]. it is shown that, to a good approximation, the increase in signal power required to 
close the link with .2 44c =  is less than 0.4 dB relative to the optimum choice. To simplify 
the development of a link equation, in the remainder we put .2 44c =  in all cases.4 Then 
the detected signal power is given by Equation (1) and Equation (15) and the detected noise 
power by

P
I D
4n
n

2r
=

where 

( . )I I I
r D

0 35
1 1

n b b
2

0
22rcmD X D= = +m m e o

is the noise irradiance in the aperture plane, with units of W/m2. Note that if D r0& , then 
In depends only on the receive telescope via Dm. 

B. Link Equation for Fixed M, Power-Constrained Regime

First consider, analogous to the RF case, the power-constrained regime (inactive bandwidth 
constraint). Substituting rP  in Equation (1) and Pn  in Equation (18) into Equation (10), we 
have
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Note that K is a function of the range R and gain G. Putting R Cb OPT# , and rearranging 
terms yields an optical link equation for this regime:
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The link equation divides into two regions: a shot-noise, or signal-dominant, region for 
large r /P Pn, and a noise-limited region for small r /P Pn:
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4 Note that this presumes the detector area can be sufficiently large to encircle a certain fraction of the signal in all cases.   	

(18)

(19)

(20)

(21)
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(23)
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The link behaves differently in these two regions. For large K , the rate is proportional to 
/R1 4, and the link is degraded by background light such that the receive telescope has a 

contribution /G In analogous to /G T  for the RF regime. For small K, the rate is proportional 
to /R1 2, and the performance is not affected by background light. These two regions of 
operations are consistent with the results found in an earlier study [5]. 

C. Link Equation for Varying M, Bandwidth-Constrained Regime

In many cases, the PPM order may be varied over the mission. This is done only when the 
bandwidth constraint is active, since, with no bandwidth constraint, the capacity is strictly 
increasing in the PPM order, and one would always use the largest available M . When one 
is bandwidth limited, the PPM order may be decreased in order to signal at a higher data 
rate. In order to reflect this, we introduce a bandwidth constraint, which we state as a mini-
mum supportable slot width Tmin. Substituting rP  in Equation (1) and Pn in Equation (18) 
into Equation (9), we have
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where 
m

Is 2= EIRP L4$ $r  is the signal irradiance in W/m2. Putting R Cb OPT# , and rearranging 
Equation (25) gives us a link equation with bandwidth constraint:
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For a given sT , Equation (9) has a capacity-maximizing M . This may be found by evaluat-
ing Equation (9) (which we conjecture is convex in M ) numerically. Suppose P Pr n& , such 
that 
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Allowing M  to be real-valued, differentiating Equation (27) with respect to M and solving 
yields
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where ( )W $  is the Lambert-W function. Equation (28) approximates the optimum M  in the 
power- and bandwidth-constrained region. Figure 1 illustrates M* given by Equation (28) 
compared to the optimum M  found by numerical evaluation of the power- and band-
width-constrained capacity, Equation (7), as a function of the mean signal photon number 

rs /N P T Es= . As one moves into the noise-limited regime, Equation (28) may be used as a 
lower bound on the optimum M .

Figure 1. Optimum M for noiseless (Pn = 0) channel as a function of the mean signal photon number  

Ns = PrTs /E. Exact from numerical evaluation of capacity, noiseless prediction from Equation (28). 

D. Antenna G/T

In the RF link equation, the dominant noise term is assumed to be the noise temperature 
of the receiver, and in Equation (6), we see that the fraction ( / )G T  is sufficient to character-
ize the impact of a particular receive antenna on an RF link — any antenna with the same 
( / )G T  will provide the same performance. The analogous term for an optical antenna, from 
Equation (22) is

( )ln
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which is a function of the ratio /I Is n. With the optical link, the dominant noise term is 
due to sky radiance, which is not a property of the antenna (except insofar as the antenna 
location is a contributing factor). Hence, we cannot capture the antenna gain and noise in 
a single term analogous to /G T . In the two asymptotic regions, the term reduces to a con-
stant multiple G or /G In. In general, the pair ( /G In) is required to characterize an optical 
telescope, and there is no single parameter analog to /G T  that captures the impact of the 
antenna and noise under all conditions.
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V. Applications and Accuracy

In this section, we examine the accuracy of the simplified link equation, and illustrate an 
example of its application, determining a critical data rate below which background noise 
begins to degrade the performance. 

A. Accuracy

 The accuracy of the simplified link equation is determined by comparing supportable data 
rates predicted with the link equation to that predicted by the Strategic Optical Link Tool 
(SOLT). The SOLT is built off the Deep Space Optical Link (DeSol) software,5 which was 
designed to generate link budgets with sufficient accuracy for mission design. SOLT is a 
modification of DeSOL designed to operate as part of the Space Communications Mission 
Model (SCMM) tool suite. In its nominal form, SOLT utilizes its own bound on the
channel capacity, trading off run-time for accuracy. We also developed a variation of the 
software called Fast-SOLT that incorporated the optical link equation and analytic field of 
view. In this article, however, we use the term SOLT to refer to its nominal form. 

Nominal SOLT differs from our simplified link equation in a number of ways. While a full 
description of SOLT is beyond the scope of this article, we point out a few significant differ-
ences in the computation of a supportable data rate. SOLT performs an optimization over 
the field of view, including contributions from detector dark noise. It takes into account sev-
eral signal-dependent loss factors, such as a finite extinction ratio, and losses due to detec-
tor jitter, which are a function of the slot width. It also allows non-extended noise sources, 
while the link equation assumes only an extended noise source. We may take SOLT to be 
representative of a high-resolution link equation for the purpose of our comparison. In 
order to measure the accuracy of the simplified link equation, it is compared to the results 
from SOLT generated by numerically evaluating Equation (8), which we take to be the true 
value. 

The link equations presented in Section IV allow any real-valued data rate. In practice, data 
rates are restricted to a finite number of choices given by the allowable signaling param-
eters. The data rate of a PPM modulation signal with error-control code (ECC) rate RECC , 
PPM order M , and slot width sT  is given by

( ) .
log

R R MT
M

b/sb ECC
s

2=

Practical systems have a minimum supportable slot width Tmin due to hardware limitations. 
A finite set of slot widths is typically supported. Our implementation of SOLT constrains 
slot width to be 1 dB steps relative to Tmin: { , , , }. .T T T1 26 1 58min min min f . Practical systems 
also allow only a finite set of supportable ECC rates. In all our examples, we put /R 1 2ECC =
a choice that represents a number of proposed designs. In order to reflect these constraints 
in the link equation (9), we choose the largest 

sMT
R Rb ECC

2=
log M

 such that C R> bOPT  with 

5 S. Piazzolla, Deep Space Optical Link (DeSOL) software, Optical Communications Group, Jet Propulsion Laboratory, 
Pasadena, California, 2008. 	

(29)

, 
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COPT given by Equation (9) — note that Equation (9) depends on ( ,M Ts). Since the collec-
tion of allowable ( , ,M T Rs ECC) is typically small, an optimization over ( , ,M T Rs ECC) is simple 
to implement.

Figure 2 illustrates achievable data rates for a 2017–2019 Mars to Mount Graham tra- 
jectory with link parameters based on the Deep-space Optical Terminals (DOT) concept 
study [8]. In Figure 2, we adopted a clear-sky atmospheric model, a code rate of .R 0 5ECC = ,  

.T 0 5min =  ns, and a fixed modulation order M 16= . Illustrated are the achievable data rates 
computed from SOLT and from link equation (9), both quantized to allowable data rates, as 
described above. We see good agreement between SOLT predictions and Equation (9). We 
also illustrate data rates predicted by Equation (9) with no restriction on RECC . In this case, 
the tool always chooses T Ts min= , and scales RECC to close the link. This is a simple upper 
bound to the data rate for fixed RECC  and requires no optimization over ( , ,M T Rs ECC).

Figure 2. Achievable data rates for a Mars–Earth link, Tmin = 0.5 ns, M = 16. Predictions from SOLT,  

Equation (9) constrained to the rates allowed by SOLT, and Equation (9) with any RECC  .

Figure 3 illustrates achievable data rates for the same trajectory but allowing 
{ }, , ,M 16 32 64 128! . Proposed missions vary the PPM order to more efficiently map  

received signal power to a data rate. As in the prior figure, the prediction from SOLT and the 
link equation is illustrated, showing good agreement. The rates achieved by allowing any 

RECC, but optimizing over M , are also shown. Figure 4 illustrates the ratios

/R R, ,b LE b SOLT

where R ,b LE is the prediction from the link equation, and R ,b SOLT  from SOLT. We see that in 
most cases, data rate is within 75 percent of the more accurate estimate from SOLT. In many 
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Figure 3. Achievable data rates for a Mars–Earth link, Tmin = 0.5 ns, M ∈{16,32,64,128. Predictions from SOLT, 

Equation (9) constrained to the rates allowed by SOLT, and Equation (9) with any RECC  .  

Figure 4. The ratios Rb,LE  /Rb,SOLT from Figures 2 and 3, illustrating a fractional error in the  

link equation of less than 40 percent in all cases. 
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cases, this is sufficiently accurate. In particular, for aspects of design where one needs not 
the absolute data rate but to know relative data rates, say, for optimization, we conjecture 
that the link equation preserves the ordering that would be given by a more accurate mea-
sure.

B. Application: Critical Data Rate

We would like to know under what conditions we fall into one of the two regimes identified 
by Equation (23) and Equation (24). One can view the driving parameter as the target data 
rate as follows. Setting R Cb OPT#  and substituting COPT in Equation (7), we compute the 
minimum receive signal power required to support data rate Rb in Equation (29): 

.
log log

R MT
M

MT
M

e1 /E
ECC

s s

MP T2 2 r s# - -_ i

Assuming .R 0 5ECC =  and rearranging terms, we have 

( )
.

ln
P MT

2 E
r

s
$

Now if the noise level is such that K 1% , then background noise will be negligible. Rear-
ranging terms and substituting the minimum received power required to support the given 
data rate, the condition on the noise power such that we are in the ( /R1 2) regime is 
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The noise power is independent of the spacecraft (EIRP and range R). Hence, Equation (30) 
gives a condition on a critical noise power as a function of the target data rate and PPM or-
der at which the link will transition from a signal-dominant to noise-dominant regime. This 
is the manner in which we typically approach a link design. Suppose we are designing an 
Earth–Mars link. The ground telescope is usually fixed (or drawn from a small set) and the 
link geometry (establishing range, sky radiance, and seeing) is also fixed. This fixes Pn. The 
designer adjusts the spacecraft resources (EIRP, Pt) to support a desired Rb. Equation (30) 
establishes a critical data rate above which the link will operate in the signal-dominant 
regime. For example, for the link illustrated in Figure 5, the noise power is below 10–12 W 
up to about 2.0 AU. Inverting this gives a critical data rate on the order of 10 Mbps. Figure 5 
illustrates the data from Figure 2 plotted as Rb versus R. We see a transition from ( /R1 2) 
to ( /R1 4) behavior around 10 Mbps. The rate drops off faster than /R1 4 beyond this range 
because the range is increasing and Pn is increasing. The rate of change of the noise power 
below the signal rate required for 10 Mbps is irrelevant, so long as it remains below 10–12 W. 

VI. Conclusions

We have developed a link equation for the direct-detected Poisson PPM channel. We dem-
onstrated the accuracy of the equation by comparing its predictions to those provided by a 

 (30)
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link budget tool with exact computation of the channel capacity. The agreement is suf-
ficiently good to justify using the equation for approximate analysis of an optical link. We 
find this useful in understanding the relationships between contributing parameters on an 
optical link. We demonstrated one such use, deriving a critical data rate at which the link 
transitions from being signal dominant to background noise dominant. 
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